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NONLINEAR WAVES AND STABILIZATION OF TWO-DIMENSIONAL INSTABILITY 

IN A BOUNDARY LAYER 

V. P. Reutov UDC 532.526.530.182 

As a rule, the transition to turbulence in a boundary layer is associated with the growth 
of two-dimensional waves [1-4]. Consequently, the investigation of the nonlinear stage in 
the development of a two-dimensional instability has an important role in the creation of a 
transition theory. Methods of the theory of a weak nonlinearity permit computation of the 
coefficients in the dynamic equations proposed by Landau [5, 6] for the weak wave amplitude. 
However, for those values of the flow parameters that are ordinarily realized in the transi- 
tion region, the weak nonlinearity approximation describes only the initial stage of wave 
amplification. Substantially nonlinear structures that originate in the boundary layer be- 
cause of the constraint of the two-dimensional instability are examined in this paper. 

The mechanism of boundary-layer instability in the case of infinitesimally small perturb- 
ations has long been studied (see [i, 7], say). It is known that the occurrence of a viscous 
near-wall layer (VNWL) results in wave destabilization, while resonance wave-flow interaction 
can attenuate or totally suppress this instability. In the case when the thickness of the 
resonance domain of flow interaction with the wave, the critical layer (CL) is sufficiently 
small, there is a possibility of analytical investigation of the substantially nonlinear stage 
in development of the instability [8-12]. Simplification of the problem is associated with 
localization of the nonlinearity within the limits of a thin CL. However, formation of the 
VNWL was not taken into account in [8] (slip conditions were posed at the wall). The shift 
in the primary flow velocity near the wall was not taken into account in [9] in the determi - 
nation of the VNWL structure, which is only justified for very large Reynolds numbers. More- 
over, it follows from the solution of the nonstationary problem [12] that the natural waves 
constructed in [9] correspond to the threshold of strict origination of instability (and are 
not constrained by it). Below, we solve the problem of stationary waves originating for mod- 
erately large Reynolds numbers that are characteristic for the main part of the boundary layer 
neutral curve loop. The analysis is constructed within the framework of CL theory and is 
based on graphic representations of the CL structure and the instability mechanism. From 
the formal point of view, the procedure proposed for the solution can be considered a general- 
ization of the Tollmien method used to construct the neutral curve in the linear theory of 
hydrodynamic instability [i]. The results of computations are compared with known experi- 
mental data. 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 35-42, July-August, 1985. Original article submitted April 24, 1984. 
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i. BYPASSING THE RESONANCE POINT 

We use the vortex transport equations in a viscous incompressible fluid [I] as the start- 
ing point. We introduce normalized variables by taking the length and velocity scales equal 
to some characteristic boundary-layer thickness 6 and the flow velocity u= at infinity, re- 
spectively. The x axis of the rectangular coordinate system is directed downstream, and the 
y axis along the normal to the surface. Then the two-dimensional flow equations take the 

form 

a~ a~ a~ ~e h~; a - ~ + u ~ + v ~ =  

h ~ = - - ~  u = ~ ,  v = - - ~ ,  

(l.la) 

(l.lb) 

where A = 82/8x 2 + 82/8yZ; ~ is the flow vorticity; P is the stream function; u and v are 
the longitudinal and transverse velocity components, respectively; Re = u~6/~ is the Reynolds 
number, which is assumed large (v is the kinematic viscosity of the medium). The velocity pro- 
file of the parallel flow in the boundary layer ~(y) is shown in Fig. i. We seek the solution 
of (i.i) in the form of stationary waves when ~ and ~ depend only on two variables: y and 

= x - ct (c is the wave phase velocity). Representing the stream function in the form P = 
/~(y)dy + ~, we examine the linear equation for @, which follows from (i.i) in the limit case 
of an inviscid medium. The Rayleigh equation [4, 7], which contains a singularity at the 
resonance point y = Yc, where u(yc) = c (see Fig. i), as is known, is obtained here for the 
profile of the harmonic wave perturbations. We take the Tollmien functions [8-10], which 
have the form ~= = ~ + 0(~2), ~b = 1 + O(n2)+(u"c/u'c) ~alnl~ I (u'c = du/dyc, u"c = d2u/dy2c) 
as ~ = y - Yc + 0, as basis functions for the Rayleigh equation. We consequently obtain for 

an expression of the form 

~p = (A• + BiTb(y)]eia~ + c .c . ,  

where a i s  t h e  wave number;  A+ and B_+ a r e  c o n s t a n t s ,  t h e  + and - s i g n s  r e f e r  t o  t h e  domains  
Y > Yc and y < Yc, r e s p e c t i v e l y ;  and c . c .  d e n o t e s  complex c o n j u g a t e .  I t  i s  seen  f rom (1.2) 
t h a t  as  y + Yc, t h e  v o r t i c i t y  and n o n l i n e a r i t y  f l u c t u a t i o n s  grow w i t h o u t  l i m i t . *  T h e r e f o r e ,  
i t  i s  i m p o s s i b l e  t o  n e g l e c t  t h e  v i s c o s i t y  and n o n l i n e a r i t y  s i m u l t a n e o u s l y  in  t h e  n e i g h b o r h o o d  
o f  t h e  r e s o n a n c e  p o i n t .  I n  a more g e n e r a l  f o r m u l a t i o n  ( t a k i n g  a c c o u n t  o f  t h e  n o n s t a t i o n a r i t y  
o f  t h e  p e r t u r b a t i o n s ) ,  t h e  p rob lem examined h e r e  o f  b y p a s s i n g  t h e  r e s o n a n c e  p o i n t  i s  a n a l o g o u s  
t o  t h a t  known f o r  waves in  a c o l l i s i o n l e s s  p l a sma .  I t  i s  known t h a t  even in  t h e  c a s e  o f  an 
i d e a l  f luid,  t h e  p r e s e n c e  o f  r e s o n a n c e  r e s u l t s  in  a b s o r p t i o n  o f  hyd rodynamic  waves ,  which 
can be c o n s i d e r e d  as  t h e  a n a l o g  o f  Landau damping in  a p lasma [13]. The p rob lem of  b y p a s s -  
ing  t he  s i n g u l a r i t y  in  l i n e a r  t h e o r y  r e d u c e s  t o  t h e  p rob lem of  s e l e c t i n g  t h e  b r a n c h  o f  t h e  
m u l t i v a l u e d  f u n c t i o n  d u r i n g  p a s s a g e  t h r o u g h  t h e  r e s o n a n c e  p o i n t .  A n a l y s i s  o f  t h e  CL s t r u c -  
t u r e  is necessary for derivation of the bypassing rule in the case of nonlinear waves. It 
is shown in [9] that the bypassing rule for a viscous nonlinear CL can be expressed, exact- 
ly as in linear theory, interms of a jump in the phase of the logarithm in the definition 
of ~b. However, this phase jump now depends on the wave amplitude. In writing the bypassing 

rule for a viscous nonlinear CL in terms of the coefficients in (1.2), we have 

II c 
B+ = B_~B, A+ A_ = -- gqb _-v B, (1.3) 

U c 

where r is the increase in phase of the logarithm during passage from Yc + 0 to Yc - 0. If 
the singularity is eliminated by viscosity, the characteristic CL thickness equals ds = 
(~iu'clRe) -z/3 [i]; if there is no viscosity, but the nonlinearity is retained, we obtain 
the scale of the nonlinear CL: dn = (Bm/lU~l) I/2 [9], where Bm = 21B I is the amplitude of 
the oscillations of the stream function in the CL. For a viscous and nonlinear CL we intro- 
duce the generalized scale dc = max (dc, dn). Let us emphasize that these deductions are 
valid for flows with thin CL when u, u', and u" vary slightly in the CL scale. 

A graphic method of calculating the jump in phase of the logarithm ~ is given by the 
vortical treatment of hydrodynamic motion. Since the CL is a thin vortical layer, we replace 
(l.lb) by the one-dimensional 

*The nonlinearity parameters as Re + ~ are the ratios (u - 5)I(5 - c) and v/(~ - c). 
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~ "  = - -$  ( 1 . 4 )  

(the primes denote derivatives with respect to y). It can be shown that the vorticity per- 
turbations in a thin CL are produced by the velocity field, which is clearly independent of 
them. The longitudinal velocity is given by the primary flow, the transverse is determined 
by vorticity perturbations outside the CL limits, and is found from the linear external equa- 
tion (1.2): if- c = u'cn, v =-~ Re [i~B exp (i~)].* However, the jump in amplitude of the 
longitudinal velocity fluctuations, induced by vorticity perturbations in the CL, exerts sub- 
stantial influence on the profile of the velocity fluctuations in the external flow domains 
(relative to the CL), which is also expressed by the second condition in (1.3). Precisely 
this jump determines the energy flux and momentum from the CL to the external domains. The 
first condition in (1.3) corresponds to a small increment in the transverse velocity during 
passage through the thin vortex layer. 

Limiting ourselves to the case of a flow with monotonic velocity growth [u'(y) > 0] and 
representing the CL vorticity in the form ~ = -~'c + (-~"cq + ~i), we introduce the normal- 
ized variables 

x = r = ( y -  = = 

where s is the normalized wave amplitude (for s - i the viscosity and nonlinearity effects 
in the CL are equalized). Since the case of large s is not examined later, the normaliza- 
tions are made in terms of the thickness di of a viscous CL, Without loss of generality, 
we can consider the amplitude B to be real and positive. Then an equation of the form 

02Q, /OY~--YOQ/OX--ss in  XO~/OY = - - s s in  X ( 1 . 5 )  

f o l l o w s  f rom ( i . l a ) .  I t  d i f f e r s  f rom t h e  a n a l o g o u s  e q u a t i o n  o b t a i n e d  in  [9] by t h e  method 
o f  m e r g e a b l e  a s y m p t o t i c  e x p a n s i o n s  o n l y  in  t h e  mode of  w r i t i n g  ( s e e  ( 3 . 2 0 )  in  [911). The de-  
sired solutions (1.5) should describe damping of the vorticity oscillations for IYI >> i. 
Asymptotics of such solutions (1.5) can be represented as expansions in powers of I/Y: 

Q--+C+_( t / 2 )H  --  (s/Y) cos X + (s~/4Ya) eos 2X + . . . ,  ( 1 . 6 )  

where C is an arbitrary constant, H is the jump in the mean vorticity induced by the nonlinear 
CL. The need to include H in (1.6) becomes evident after the average of (1.5) is taken over 
the wave period, and integration of the equation obtained in Y (see [9] for details). Using 
(1.2) and (1.4), the jump in phase of the logarithm r can be related to the solution of the 
boundary-value problem (1.5) and (1.6): 

qD = -- (2/s) ~ <Q sin X> dY, ( 1 .7  ) 

where <...> denotes the mean wave over the period. The dependence of ~ on the parameter ic = 
d3~/d~n s -2/3 is constructed in [9]. A simple analytic approximation ~ = --~/(i + 0.68s2) 3/~ 
is proposed for it in [12]. The normalized curvature of the mean velocity profile in the 
CL, u = <u>"/u"c = 1 - d<~>/dY, is shown in Fig. 2 (curves 1 and 2 correspond to s = i and 2). 
It is seen that the profile of the mean velocity in the CL tends to the linear as the wave 
amplitude increases.# 

~This can be seen by using the solution (1.2) for Inl ~ dc and estimating the velocity incre- 
ment in the layer !qi < dc from (1.4) and the condition $(N) N~In=• c. 

#The problem (1.5), (1.6) was solved numerically to determine the CL structure. The so!u- 
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2. TAKING ACCOUNT OF THE INFLUENCE OF THE WALL 

To use the bypassing rule (1.3) in the presence of a wall, it is required that the solu- 
tion of (1.5) emerges on the asymptotic (1.6) prior to intersection with the wall level. This 
condition for the isolation of the CL from the wall can be written in general form as ycdc >> 
i. Moreover, because of fluid adherence to the wall, perturbations of nonviscous type (1.2) 
generate viscous vortical perturbations that damp out rapidly in directions from the wall, 
a viscous near-wall layer originates. It was emphasized in [7] that for moderately high 
Reynolds numbers, the process of transforming the viscous perturbations during passage through 
the CL exerts strong influence on the shape of the neutral curve. This process is substan- 
tial even for yc/ds ~ zc ~ 3, when the CL can be considered isolated. Neglecting the shift in 
the primary flow velocity in determining the VNWL structure, and considering the CL isolated, 
only the asymptote of the upper branch of the neutral curve can be obtained for very large 
RE [9, 12]. The approximation of an isolated CL with the transformation of viscous perturba- 
tions in the CL taken into account is actually utilized in linear instability theory and per- 
mits construction of the fundamental part of the boundary layer neutral curve loop [i, 7, 
14, 15]. 

Let us show that an analogous approximation can be used even in the case of a nonlinear 
CL. Analysis of the nonlinear problem is complicated by the fact that the mean flow due to 
the jump in vorticity in the CL (see Sec. i) is only found uniquely with the fact of the pri- 
mary flow not being parallel taken into account. The asymptotic expansions should correspond- 
ingly contain the ratio x/Re << 1 [9] as the small parameter. However, a simple scheme based 
on graphic physical representations and being a generalization of the Tollmien method known 
in linear theory [i] can be proposed to seek the eigenvalues of the boundary-value problem 
in the principal approximation. 

In the case of an isolated CL the viscous perturbations damp out strongly on the path 
from the wall to the coincidence layer.* Consequently, they exert weak influence on the ve- 
locity field in the CL (see Sec. i) and (1.5) remains valid. It is seen that (1.5) describes 
not only the process of generation of vortical perturbations on the vorticity gradient of 
the primary flow, but also the process of propagation of viscous type perturbations incident 
on the CL. To take account of the viscous perturbations arriving from the wall, we set ~ = 
~(1) + ~(2), where ~(i) is the forced solution of (1.5) examined in Sec. i, and ~(~) is the 

solution of the homogeneous equation 

02~(2) 0Q(2) 0Q(2) 
OF ~ y - - 5 - 2 - - - - s s i n X - s p - =  0 (2.i) 

t h a t  s a t i s f i e s  t h e  damping c o n d i t i o n  f o r  t h e  v o r t i c i t y  p e r t u r b a t i o n s  above  t h e  CL: a (2) * 
const as Y § +~. It can be shown that the nature of the asymptotic behavior of ~(2) as IYI + 

is determined by an operator consisting of the first and second terms in (2.1). Only the 
component ~(1) that governs merging of the inviscid solutions (1.2) will enter into the ex- 
pression for the jump in the phase of the logarithm (1.7). Equation (1.2) can be used to 
describe viscous perturbations in the whole range between the wall and the CL. Indeed, for 
s = 0, an equation known in linear theory [i] follows for the complex amplitude of the har- 
monic [~exp (iX)] perturbation. If s # 0, the contribution of the term s in (2.1-) diminishes 
for s/V~-as IYI § ~. Therefore, even in the case of viscous perturbations the nonlinearity 
turns out to be localized in the CL. Consequently, the distinction between the fixed trans- 
verse velocity fields used in deducing (1.5) and (2.1) and the true distribution near the 
wall (which vanishes at the wall) results in a small error within the limits of applicability 

of this approach. 

Let us introduce a stream function for the viscous perturbations ~ and transform from 
~(2) to vorticity in the initial normalization ~. Since there is also the relationship (1.4) 
between ~ and ~, the condition that the longitudinal velocity vanish at the wall yields a 
boundary condition for (2.1) 

tion was represented in the form of a segment of a complex Fourier series (see Sec. 2 analo- 
gously). Good agreement was obtained with the values of ~ presented in [9]. 
*The estimate gW - yc~(ds 3/2 << yc can be obtained for the scale of viscous perturbation 
diminution along y, the direction near the wall. 
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0 

3 = *; I =o, (2 .2)  

where a is the complex amplitude of the Fourier harmonic: ~a = <~exp(-ia$)>, etc. To take 
account of the reverse influence of the viscous perturbations on the inviscid perturbations 
(1.2), we write the condition that the normal velocity component is zero at the wall 

0 Y~ 

(2.3) 

From (2.2) and (2.3) we obtain the boundary condition for ~a in the form 

-- /17 e 

where 

(2.4) 

--Yc ~]I --Yc 

~o oo ~o 

characterizes the effective pliability of the boundary for the inviscid perturbations. 

To compute F we set the vorticity normalization : in correspondence with the boundary 
condition (2.2) by setting ~ = :(2ds where Um = 2[~'~(0)! is the amplitude of the lon- 
gitudinal velocity fluctuations on the wall in the inviscid solution (1.2). Representing ~ in 
the form of a Fourier series 

= ~ ~exp(inX) 

(~0 = <~>, ~-n  = ~ n ) ,  we o b t a i n  a s y s t e m  o f  e q u a t i o n s  f o r  t h e  complex  a m p l i t u d e s  o f  t h e  h a r -  
monics  in  t h e  fo rm 

The boundary conditions for ~n for n = i, 2, 3 .... have the form 

(2.5) 

--Z c 

oo 

(2.6) 

where 6ij is the Kronecker delta; E = exp (i0); 8 = arg [~'~(0)/~(yc)] is the shift between 
the phases of the stream function fluctuations in the CL and the longitudinal velocity at 
the wall in the inviscid solution (1.2). Taking into account that Y + ~, d~0/dY § 0, it is 
possible to eliminate d~0/dY from the system (2.5) and obtain a closed boundary-value prob- 
lem for ~n with n = i, 2 .... We reDresent the solution of this problem in the form ~n = 
~(C)n cos 0 + ~(s) n sin 8, where ~(C)n satisfied (2.5) and (2.6) for E = i and ~(s) n is the 
solution of (2.5) and (2.6) for E = i. Correspondingly, we obtain an expression for F: 

F(zc, s; O) = (F c cos 0 -k Fs sin O)e -m, 
--ZC YI 

Z e 

In the limiting case of linear waves (s + 0), the relationship ~(s): = i~(c): is satis- 
fied. Here F is independent of s, 8 and agrees with the function F(Zc), known well from 
linear stability theory [14, 15]. For s # 0 the boundary-value problem (2.5) and (2.6) was 
solved numerically. The computations were made for s ~2 with the first four harmonics re- 
tained in the Fourier expansion. The results of calculating Fc and Fs for zc = 3.8 are rep- 
resented in Table i. 
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TABLE 1 

I I s i r e  F c I m  F c i r e  F~ I m  F 8 

0 0 ,2036 0,32i3 I --0,321310,2036 

0,4 0,20sl 0,3012] -0,32,6 I 0,2067" 

0,30,8 I -0,3.~ I 0,22,  
2 0,3738 0,0934 I --0,3039 I 0,2172 

3. STATIONARY FLUCTUATIONS AND BUILDUP OF SELF-OSCILLATIONS 

To close the boundary-value problem we use the standard condition on the boundary-layer 

Y = Ym [i]: 

~ § =~= = 0 I~=~. ( 3 .1  ) 

S u b s t i t u t i n g  ( 1 . 2 )  i n t o  ( 2 . 4 )  and ( 3 . 1 )  r e s u l t s  in  t h e  f o l l o w i n g  c h a r a c t e r i s t i c  e q u a t i o n  f o r  
the stationary pulsations: 

--u 

U c 

q)= (o) Ab-- % (o) A - -  iO ---~ ~= (o) A~ 
F (z~, s; O) l ~o 

= - -  -,, ~, ( 3 . 2 )  Yc I U r  t 
�9 'b (o) A ~ -  ~a (0) A b + ~o --7 ~a (0) ~ 

~U c 

where A=,b= ~:,b + a~a,b[y=ym. It can be shown that (3.2) goes over into the characteristic 
equation of linear theory [i] as s + 0. Let us also note here that in the case when the reso- 
nance interaction of the wave-flow and the formation of the VNWL, being taken into account sep- 
arately yield weak damping (amplification) of the wave, the amplitude of the stationary fluc- 
tuations can be found from the condition that the gain increment equals the damping decrement 
[12, 16]. However, this graphic representation is only applicable for sufficiently small 
a, which is expressed in the significant shift of the point for the loss of stability in the 
limit case of linear waves [16]. 

To evaluate the roots of (3.2) for s ~ 0 it is necessary to determine 0 for "trial" solu- 
tions (1.2). It is convenient to take 0 from the solution (1.2) satisfying the boundary con- 
dition (3.1) and the rule for bypassing the resonance point (1.3). The system of two real 
equations that follows from the complex equation (3.2) was solved numerically for ~ and c 
for fixed Zc and s. The functions ~a and @bwere sought by numerical integration of the Ray- 
leigh equation (see [8] analogously). The computations were made for a boundary layer with 
a Blasius velocity profile. The thickness 8 (see Sec. i) was taken equal to the boundary- 
layer displacement thickness, and correspondingly we set Ym = 3. The Blasius profile u(y) 
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was approximated by a piecewise-linear function given by 3000 identical segments in the inter- 
val 0 s y ~ 3. The results of the calculations are represented in Fig. 3a-c in the form of 
level curves for the stationary fluctuation amplitudes on different planes of the parameters 
(curves 1-5 correspond to s = 0, 0.4, i, 1.5, and 2). 

The neutral curves of linear theory to which the lines s = 0 correspond in Fig. 3 have 
the loss-of-stability point Ren = 420, which is in agreement with the results of computations 
for a rougher velocity profile approximation [17]. The intersection of the line s = const 
and the neutral curve is shifted to the tip of the neutral curve as s diminishes. A weakly 
nonlinear theory, in which the limit position of this point (Re,) corresponds to disappear- 
ance of the second coefficient in the Landau equation [6], results in the same deduction~ 
The behavior of the amplitude level curve on the plane (Re, ~) can be related to the wave 
development in time when the wave number ~ is conserved. It is natural to assume that hard 
excitation of self-oscillations is realized in that domain of the parameters Re, ~, where 
the level lines intersect (it is bounded by the upper branch of the linear theory neutral 
curve and the envelope of the family s = const). Here the greater of the two values of s 
corresponds to the self-oscillation regime, while the smaller characterizes the threshold 
of the hard excitation of self-oscillations. Soft excitation holds within the neutral curve 
loop, where there is no intersection of the level lines. These assumptions are confirmed 
by the results of solving the nonstationary problem in different limit cases [6, 12, 16]. 
Let us emphasize that self-oscillatory regimes with a small level of nonlinearity (s << i) 
are possible only near the lower part of the neutral curve loop (soft excitation) adjoining 
the limit point Re, and in a small neighborhood of this point (hard excitation). 

The approximation of an isolated CL loses meaning for large-amplitude waves when the 
closed streamlines of the velocity fields in the CL ("cat's eye" [8]) approach the wall. 
Since removal of the cat's eye boundary from the coincidence layer y = yc equals 2dn, we ob- 
tain a constraint on the wave amplitude in the form s < 1/~Z2c. This condition is satis- 
fied for the curves shown in Fig. 3. As seen from Fig. 3, the amplitude of the self-oscil- 
latory regimes grows rapidly during motion along the upper branch of the neutral curve s = 
0 toward large Re, which is explained by attenuation of the influence of the CL nonlinear- 
ity on the efficiency of the viscous wave destabilization mechanism. For very large Rey- 
nolds numbers, when the viscous mechanism becomes linear because of the rapid damping of the 
viscous perturbations on the path from the wall to the CL, the approximation of an isolated 
CL yields only those waves which correspond to the threshold of hard origination of insta- 
bility [9, 12]. Therefore, in the case of an isolated CL stabilization of the two-dimen- 
sional instability is associated with the influence of the CL nonlinearity on both the effi- 
ciency of resonance wave-flow interaction and the efficiency of the viscous wave de- 
stabilization mechanism. 

Buildup of the self-oscilalting regime in the two-dimensional stage of instability de- 
velopment in the boundary layer on a plate was observed in [18]. The amplitude of the lon 2 
gitudinal velocity fluctuations in their maximum on the wave profile originating near the 

wall was here approximately 2.8% of u~. This quantity is close to the amplitude of the longi- 
tudinal velocity fluctuation on a wall in the inviscid solution (1.2), um (see Sec. 2) in the 
theory developed above. For a wave with amplitude s = i with Re - 800 that corresponds, 
as in [18], to the self-oscillatory regime in the neighborhood of the neutral curve upper 
branch, calculations yield um/B ~ 1.66. Hence the value um = 3.1% is obtained, which is 
close to that measured in [18]. 

In conclusion, let us note that the accuracy of the asymptotic theory, within which the 
characteristic equation is constructed for the nonlinear waves (3.1), permits only a rough 
comparison between the computation results and the experimental data. As is known, even in 
a linear approximation the asymptotic theory results in a noticeable quantitative diver- 
gence from the results of direct numerical integration of the Orr-Sommerfield problem. More- 
over, for moderately large Re the corrections associated with the flow not being parallel 
[3] play a noticeable role. At the same time, the asymptotic approach permits giving a qual- 
itative analysis of the wave field structure as a whole. In this paper, the mechanism of 
the limitation of the two-dimensional instability is clarified with its aid, and the nature 
of the dependence of the self-oscillation amplitude and the threshold of their hard origination 
on the wave parameters and Reynolds number is determined. The analysis performed is also 
of interest for the construction of models of three-dimensional nonlinear structures occurring 
in the transition region. 
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